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Various methods for computing radial wave functions and scattering phase shifts of 
short-range local interactions are briefly discussed and numerical results are presented for 
a static electron-hydrogen potential. It is found that a quadrature solution of the integral 
equation is highly competitive in terms of accuracy, particularly at very low energies where 
it has superior numerical stability over differential equation methods and is also less de- 
manding in computer time. 

1. DISCUSSION OF METHODS 

Radial wave functions ul(r) and scattering phase shifts 6,(k) of short-range local 
interactions V(r) are most frequently determined at positive energies k* (in the center 
of mass frame) by solving numerically the partial-wave Schradinger differential 
equation 

under the boundary conditions 

k(r) - a:,(k) rz+l as r--t 0, 

- kr[j,(kr) - tan 6,(k) Qkr)] 
(2) 

as r--too, 

where j, and n, are the spherical Bessel and Neumann functions, respectively. The 
solution of this boundary value problem is usually computed by employing a con- 
venient initial value method, such as the standard fourth-order Runge-Kutta process 
[l] or Numerov’s finite difference scheme [l], which starts the integration of the ditfe- 
rential equation from the boundary condition at r = 0 and progresses outward 
until an arbitrary large value of r is reached where the numerical solution is matched 
to the prescribed asymptotic behavior of the wave function. 

The objective of this note is to compare the phase shifts computed via the Runge- 
Kutta and Numerov methods against each other and against the phase shifts obtained 
via alternative numerical methods which are presented below. The boundary con- 
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ditions at r = 0 and r = co are both applied simultaneously in these latter methods 
which are derived from an integral equation formulation of the problem, 

Differential equation (1) together with the boundary conditions (2), can be trans- 
formed into the integral equation 121 

uz(r) = krj,(kr) + Jam Gl(r, r’) V(r’) q(r)) dr’ (3) 

in which the Green’s function takes the form 

G,(r, r‘) = krr’j,(kr) nl(kr’) for r < r’, 

= krr ‘j&b’) nl(kr) for r Z r’. 
(4) 

By comparing the second of the boundary conditions (2) with integral equation (3) 
when r 2 r’ we obtain the phase shift formula 

tan S,(k) = -jm r’j,(kr’) V(r’) uL(r’) dr’. (5) 
0 

The infinite upper limits of the integrals in Eqs. (3) and (5) can be removed by using 
the substitution 

r = x/(1 - x), (6) 

which maps the interval 0 < r < co onto the interval 0 < x < 1, to obtain 

and 

udr) = W&r) + s,’ (1 _’ xt)2 W, r’) Vr’) udr’) dx’ (7) 

tan &W = -s,’ (1 _” x)3 .W-1 J’(r) udr) dx (8) 

in which the local interaction V(r) vanishes when x (or x’) equals unity. 
The standard numerical approach for solving Fredholm integral equations of the 

second kind is now followed: The integrals on the right-hand sides of Eqs. (7) and 
(8) are replaced by a quadrature formula to yield 

and 

where the weights w, and pivotal points x, are determined by the chosen quadrature 
formula. Equation (9) is transformed into a closed system of simultaneous linear 
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algebraic equations for the radial wave function if r is restricted to the pivotal points 
x,/(1 - x,) of the numerical integration. The solution of these linear equations 

zaythen be substituted into Eq. (10) in order to compute the phase shift 6,(k). 
(Equation (9) may, of course, be used as an interpolation formula to evaluate q(r) 
at any nonpivotal value of r when the ur(r,J are known.) 

Some comments concerning the application of quadrature formulas are appropriate 
at this stage. The use of such a formula requires the integrand to be differentiable 
a sufficient number of times (depending on the chosen formula) at all points within 
the open interval of the integration (i.e., excluding the end points of the interval). 
This condition is necessary for the existence of a finite error term [3]. However, as 
aG,/W is discontinuous at r’ = r in Eq. (3), i.e., at x’ = x in Eq. (7), care must be 
exercised when setting up the quadrature approximation (9) and the resulting system 
of linear equations for the radial wave function. 

If the composite trapezoidal rule is employed as the chosen quadrature formula 
in (9) and (10) then the closed system of linear equations for the wave function takes 
the form 

where t = 0, 1,2 ,..., n - 1 and 

h = l/n, x, = mh, r,,, = x,/(1 -x,,,). (12) 

(In (ll), use has been made of the fact that the integrand in (7) vanishes at x’ = 0 
and 1.) In view of transformation (6) it can be seen that half of the pivotal points in 
(11) lie in the interval 0 < r < 1, that is, in the region where the most rapid change 
in the potential V(r) usually occurs. The discontinuity in aGr/ar’, which occurs along 
the principal diagonal in the system of Eqs. (ll), does not pose any problems with 
this particular quadrature approximation because it coincides with the common end 
point of the subintervals [xtel , xt] and [xt , xt+,] over which the basic trapezoidal 
rule is applied (xt being the pivotal point on the principal diagonal). 

The application of the composite trapezoidal rule to the approximate phase shift 
formula (10) yields 

n-1 

tan MW = --h mC, (1 ox,, .h(kr,) WA udr,) (13) 

where h, x, , and r,,, take the values defined in (12) (and use has been made of the fact 
that the integrand in (8) vanishes at x = 0 and 1). Half of the (n - 1) terms on the 
right-hand side of this formula represent the region of most rapid change in V(r). 
Furthermore, it is obvious that half of the pivotal points will always lie in the interval 
0 < r f 1 whenever the quadrature approximations (9) and (10) are represented by 
a closed Newton-Cotes formula (either basic or composite), the trapezoidal rule 
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being the simplest example. The discontinuity in aG,/ar’ will also always occur along 
the principal diagonal in the system of linear equations derived from (9). 

When Eqs. (9) and (10) are represented by the composite version of Simpson’s 
rule the closed system of linear equations for the radial wave function takes the form 

h 2n-1 

4-t) - 3 jxl (1 cmxm)2 G(rt , r,J Ur,) udrm) = krtjdkrt) (14) 

where t = 0, I,2 ,..., 2n - 1 and 

h = 1/2n, x, = mh, r, = x,/(1 - x,,J, 

Cl = cs = *** = C2n-l = 4, c2 = cq = **- = cznm2 = 2, 
(15) 

whilst the approximate phase shift formula becomes 

(16) 

(remembering that the integrands in (7) and (8) vanish at each end of the interval 
of integration). For those equations with an even value of t in (14), the discontinuity 
in aGJar’ does not pose any problems because it coincides with the common end 
point of the subintervals [xte2, xt] and [xt , x~+~] over which the basic form of 
Simpson’s rule is applied. However, in the equations with an odd value of t, the dis- 
continuity in aG,/ar’ occurs at the center of the subinterval [xtel , xt+,] and thus 
could possibly lead to an undefined error term in the quadrature approximation. 
But, as can be seen from numerical results presented below (Table VII), Eqs. (14) 
and (16) are stable, the rate of convergence with respect to the number of pivotal 
points used being only slightly slower than for Eqs. (11) and (13). 

If Gauss-Legendre quadrature formulas are to be employed then it is more appro- 
priate to use the transformation 

r = (1 + x)/U - x), (17) 

which maps the interval 0 < r < cc on to the interval -1 < x < 1, rather than (6) 
so that Eqs. (3) and (5) become, respectively, 

udr) = krj,(kr) + I-: vs W, r’) W’> 49 dx’ 

581/25/w 
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Replacing the above integrals by an n-point Gauss-Legendre formula leads to the 
system of linear equations 

with t = 1, 2, 3 ,..., n and the approximate phase shift formula 

where the weights W, and pivotal points x,,, are available from tables for various values 
of it [4]. As the use of an n-point Gauss-Legendre formula normally requires the inte- 
grand to be differentiable at least 2n times [3] within the open interval (-1, I), there 
is the possibility of an undefined error term in the system of Eqs. (20) due to the dis- 
continuity in aG#r’. However, as can be seen from numerical results presented below 
(Table VIII), Eqs. (20) and (21) yield stable results, the rate of convergence being 
approximately the same as that for Eqs. (14) and (16). (As the abscissas in a Gauss- 
Legendre quadrature formula are distributed symmetrically with respect to x = 0, 
half of the pivotal points in (20) and (21) lie in the interval 0 < r < 1, the region 
of most rapid change in V(r).) As a Gauss-Legendre formula is an open integration 
formula the discontinuity in aGJar’ cannot be made to coincide with the end points 
of subintervals if a composite version of the two-point Gauss-Legendre formula is 
employed to solve either Eq. (7) or (18), in contrast to the situation experienced with 
the composite trapezoidal rule. 

2. NUMERICAL RESULTS 

Five ALGOL 60 programs have been developed to compute radial wave functions 
and scattering phase shifts of local interactions of the form 

V(r) = 5 4 ew(-w)/r + 5 4 exp(-p,r) t=1 t=1 

(pt > 0, pt > 0) for any value of the orbital angular momentum 1 (= 0, 1,2, 3,...) 
over any (user) specified range of positive energies k2 via 

(i) the standard fourth-order Runge-Kutta method with step length h and 
matching points determined from a (user) specified upper bound on the product kr; 

(ii) the Numerov method with the same parameters as in (i); 

(iii) Eqs. (11) and (13); 
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(iv) Eqs. (14) and (16); 
(v) Eqs. (20) and (21). 

Table I displays the approximate times taken on a CDC 7600 computer by the 
Runge-Kutta program to solve Eq. (I), as a function of k, the step length h, and the 
position of the matching points, whilst Table II contains the corresponding times for 
the Numerov method program. It can be seen from these tables that the Runge- 
Kutta and Numerov method programs take approximately 0.06 and 0.02 seconds 
per 100 pivotal points, respectively. Table III indicates the approximate times taken, 
per k value, on a CDC 7600 computer by the three quadrature method programs to 
set up and solve their respective equations in terms of the number of pivotal points 
used. The composite trapezoidal rule program requires slightly less time than the 
composite Simpson’s rule program because of the simpler weights in the former 
quadrature approximation. The time taken by each of the quadrature method 
programs varies quadratically with respect to the number of pivotal points employed, 
in contrast to the linear time variation of the differential equation programs. 

This note contains numerical results obtained from the five programs for the static 
electron-hydrogen potential 

V(r) = -2(1 + (l/r)) exp( -2r), (23) 

the phase shifts of which have also been determined via other methods [5, 61. S-, P-, 
D-, and F-wave phase shifts computed via the fourth-order Runge-Kutta method 
are displayed in Table IV with h = (0.1, 0.05, 0.01) and matching points determined 
from kr m 25. It can be clearly seen that the Runge-Kutta method is unstable for 
Sa(O.1) with each value of h. Further calculations performed with kr m (25, 50, 100, 
200) have shown that the method is unstable for 6,(k) when I > 3 and k < 0.5. It 
has also been found that instability arises for S,(O.l) when kr = 100 and 200. It has 
been observed that there is little change in the values of any of the phase shifts (with 
the exception of the instabilities mentioned above) with h = 0.01 when kr is doubled 
from 25 to 50 and then to 100. However, the process of moving the matching points 
further and further from the origin leads to a loss of accuracy which grows appreciably 
with increasing energy when the S,(k) are computed with h = 0.1; there is also a 
parallel but smaller loss of accuracy when h = 0.05. When calculations were per- 
formed with matching points determined from kr = 12.5 the accuracy remained 
unchanged at low energies but it was found to deteriorate with increasing energy 
for all I irrespective of the value of h. Hence, the optimum rate of convergence with 
respect to h obtained from the Runge-Kutta program appears to occur when the 
matching points are determined from kr NN 25. 

The corresponding phase shifts computed via the Numerov method are presented 
in Table V. Once again instability is present for S,(O. l), irrespective of the value of h, 
and further calculations have indicated that the method is unstable for 6,(k) when 
1 > 3 and k < 0.5. Instability has also been found to occur for S,(O.l) with h = 0.01 
when kr = 50 and 100. The results for S&0.1) deteriorate even further when the 
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TABLE I 

Approximate Times (in Seconds) Taken on a CDC 7600 Computer by the Fourth-Order Runge-Kutta 
(ALGOL 60) Program to Solve Eq. (1) with Step Length h and Matching Points Determined from the 

Condition kr w 25” 

k h = 0.1 h = 0.05 h = 0.01 

0.1 1.48 2.93 14.49 
0.5 0.32 0.61 2.92 
1.0 0.18 0.32 1.49 
2.0 0.10 0.18 0.76 
3.0 0.08 0.13 0.52 
4.0 0.07 0.10 0.40 
5.0 0.06 0.09 0.32 

a For kr - 50 and kr w 100 the above times should be multiplied approximately by two and 
four, respectively. 

TABLE 11 

Approximate Times (in Seconds) Taken on a CDC 7600 Computer by the Numerov Method (ALGOL 
60) Program to Solve Eq. (1) with Step Length h and Matching Points Determined from the Condition 

kr m 25” 

k h = 0.1 h = 0.05 h -= 0.01 

0.1 0.52 1.01 
0.5 0.13 0.23 
1.0 0.09 0.14 
2.0 0.06 0.08 
3.0 0.05 0.07 
4.0 0.05 0.06 
5.0 0.05 0.06 

-- .-~__ 
4.84 
1 .oo 
0.53 
0.28 
0.20 
0.16 
0.14 

a For kr - 50 and kr = 100 the above times should be multiplied approximately by two and 
four, respectively. 

TABLE III 

Approximate Times (in Seconds) Taken on a CDC 7600 Computer by the Quadrature Method 
(ALGOL 60) Programs to Set Up and Solve Their Respective Equations Per k Value= 

0 
1 
2 
3 

Equations (11) and (13) 

n= 20 n=40 n= 50 

0.12 0.59 1.04 
0.12 0.62 1.08 
0.18 0.88 1.48 
0.23 1.09 1.82 

Equations (14) and (16) Equations (20) and (21) 

2n = 20 2n = 40 2n = 50 n = 20 n = 40 n = 48 
.._ .--___ 

0.13 0.60 1.08 0.13 0.61 0.98 
0.13 0.63 1.12 0.13 0.64 1.02 
0.19 0.89 1.52 0.19 0.90 1.42 
0.24 1.10 1.86 0.24 1.11 1.76 

Q n and 2n specify the number of pivotal points used. The dependence on I is due to the Green’s 
function (4). 
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matching points are determined from kr = 200; the following were obtained (in 
degrees) 

h = 0.1: So = 39.57, 8, = 0.015358, 6, = 3.88 x 10-q 6, = 8.8 x lo-‘, 
h = 0.05: 6, = 40.89, 6, = 0.015358, 6, = 4.05 x 1O-5, 8, = 2.3 x 10-6, 
h = 0.01: 6, = 60.79, 6, = -29.49, 6, = 60.29, 6, = -30.64. 

It has been observed again that there is little change in the values of the phase shifts 
(with the exception of the instabilities mentioned above) with h = 0.01 when kr 
is doubled from 25 to 50 and then to 100, and it is seen that there is good agreement 
with the results obtained via the Runge-Kutta method with h = 0.01. However, it 
should be noted that the Runge-Kutta method yields low energy S-wave phase shifts 
with more significant figures than does Numerov’s method. It has been found from 
calculations performed with kr M (25, 50, 100, 200) that with h = 0.1 the value of 
6,(k), for any given k, is increased as the matching points are moved further and further 
from the origin, the effect becoming more noticeable as the energy rises; there is also 
parallel but smaller increase in the phase shift values where h = 0.05. However, 
when calculations were carried out with kr = 12.5, the results obtained were 
analogous to those yielded by the Runge-Kutta method with kr M 12.5, that is, 
the accuracy experienced little or no change at low energies but it deteriorated with 
increasing energy for all I irrespective of the value of h. Thus, in order to compute 
reliable phase shifts via Numerov’s method the choice of step length and matching 
points should probably satisfy the inequalities h < 0.01 and kr > 25, respectively. 

Tables W-VIII contain the phase shifts of the e--H interaction (23) computed via 
the three quadrature methods. It can be clearly seen that each of these methods is 
completely stable for 6,(0.1) and 8,(0.1). (Further calculations have shown that the 
methods are also stable for all k > 0 when I > 3.) At most energies the composite 
trapezoidal rule provides the fastest rate of convergence with respect to the number 
of pivotal points employed (due to the discontinuity in aGl/ar’ discussed earlier in this 
note) whilst the composite Simpson’s rule and the Gauss-Legendre formulas exhibit 
approximately the same rates of convergence. The results obtained with the use of 
40 to 50 pivotal points in each of the quadrature methods are in good agreement at 
most energies with the h = 0.01 differential equation results (and often with the 
h = 0.05 results as well). At medium and high energies the 20-point quadrature 
phase shifts are usually of higher accuracy than those computed via the Runge-Kutta 
or Numerov methods with h = 0.1. 

All the numerical results presented in this section have been obtained via single 
precision arithmetic carried out on a CDC 7600 computer whose core store has a 
word length of 60 binary bits; floating point numbers are stored to an accuracy of 
14 or 15 significant figures. Double precision arithmetic is not available in ALGOL 60. 
However, it should be noted that the computer time requirements of each of the 
methods examined in this section would increase considerably if calculations were 
performed with double precision arithmetic. (Single precision on a CDC 7600 is 
almost equivalent to double precision on IBM 360/370 computers.) 
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3. CONCLUSION 

The numerical results presented above show that the various methods employed 
to solve the partial-wave Schrijdinger equation yield phase shifts of similar accuracy, 
provided that the step length is small enough in the Runge-Kutta and Numerov 
methods and that a sufficient number (40 to 50) of pivotal points are used in the 
quadrature methods. The most reliable of the latter methods is the composite 
trapezoidal rule because it should always be unaffected by the discontinuity in the 
first derivative of the kernel in Eq. (3). This simple quadrature method is strongly 
recommended for computing phase shifts at very low energies, i.e., with k < 0.5, 
particularly when I > 1, because of its superior stability over differential equation 
methods in this energy region (confirmed by further calculations) and its more 
economic computer time requirements. The most accurate low energy (k < 2) 
S-wave phase shifts are obtained by using either the fourth-order Runge-Kutta 
method or the composite trapezoidal rule, with the average time requirements 
(Tables I and III) over this energy region generally favouring the latter. 

As expected, Numerov’s method (with step length and matching points as suggested 
at the end of the penultimate paragraph in Section 2) requires the minimum computer 
time averaged over all energies above k2 = 0.25 when compared with the other 
numerical methods for determining scattering phase shifts of short-range local inter- 
actions. However, the composite trapezoidal rule appears to yield results of greater 
accuracy when averaged over all energies and all orbital angular momenta than do the 
other methods investigated in Section 2. It is, of course, well known that the Runge- 
Kutta and Numerov methods may be used in a self-correcting manner whereby the 
step length is automatically adjusted until a result of specified accuracy is achieved, 
but the computer time required for such a procedure cannot be easily predicted. 

The general conclusions outlined above have been confirmed by performing 
calculations with other central potentials of the form (22), including neutron-proton 
3S, and 5, interactions consisting of sums of two and three Yukawa potentials, 
respectively. 
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